Submit Manuscript  

Article Details


Chemical Intuition in Drug Design and Discovery

[ Vol. 19 , Issue. 19 ]

Author(s):

Júlia G.B. Pedreira, Lucas S. Franco and Eliezer J. Barreiro*   Pages 1679 - 1693 ( 15 )

Abstract:


The medicinal chemist plays the most important role in drug design, discovery and development. The primary goal is to discover leads and optimize them to develop clinically useful drug candidates. This process requires the medicinal chemist to deal with large sets of data containing chemical descriptors, pharmacological data, pharmacokinetics parameters, and in silico predictions. The modern medicinal chemist has a large number of tools and technologies to aid him in creating strategies and supporting decision-making. Alongside with these tools, human cognition, experience and creativity are fundamental to drug research and are important for the chemical intuition of medicinal chemists. Therefore, fine-tuning of data processing and in-house experience are essential to reach clinical trials. In this article, we will provide an expert opinion on how chemical intuition contributes to the discovery of drugs, discuss where it is involved in the modern drug discovery process, and demonstrate how multidisciplinary teams can create the optimal environment for drug design, discovery, and development.

Keywords:

Chemical Intuition, Medicinal Chemistry, Drug Discovery, Lead Optimization, Structure-Activity Relationship, Decision-making, History of Drug Discovery.

Affiliation:

Laboratorio de Avaliacao e Sintese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Laboratorio de Avaliacao e Sintese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Laboratorio de Avaliacao e Sintese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ

Graphical Abstract:



Read Full-Text article