Submit Manuscript  

Article Details

In Vitro Intestinal Co-Culture Cell Model to Evaluate Intestinal Absorption of Edelfosine Lipid Nanoparticles

[ Vol. 14 , Issue. 9 ]


Beatriz Lasa-Saracíbar, Melissa Guada, Victor Sebastián and Maria J. Blanco-Prieto   Pages 1124 - 1132 ( 9 )


Nanotechnology is providing a new therapeutic paradigm by enhancing drug efficacy and preventing sideeffects. Edelfosine is a synthetic ether lipid analogue of platelet activating factor with high antitumor activity. The encapsulation of this potent antitumor drug in lipid nanoparticles increases its oral bioavailability; moreover, it prevents the hemolytic and gastrointestinal side-effects of the free drug. The literature points towards lymphatic absorption of lipid nanoparticles after oral administration, and previous in vitro and in vivo studies stress the protection against toxicity that these nanosystems provide. The present study is intended to assess the permeability of lipid nanoparticles across the intestinal barrier. Caco-2 monoculture and Caco-2/Raji co-culture were used as in vitro models of enterocytes and Microfold cells respectively. Results showed that free drug is internalized and possibly metabolized in enterocytes. These results do not correlate with those observed in vivo when edelfosine-lipid nanoparticles were administered orally in mice, which suggests that the microfold model is not a good model to study the absorption of edelfosine-lipid nanoparticles across the intestinal barrier in vitro.


Caco-2, edelfosine, lipid nanoparticles, permeabiltity, raji, transport.


Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea 1, E-31080 Pamplona, Spain.

Graphical Abstract:

Read Full-Text article