Submit Manuscript  

Article Details


Tetramethoxyluteolin for the Treatment of Neurodegenerative Diseases

[ Vol. 18 , Issue. 21 ]

Author(s):

Theoharis C. Theoharides* and Irene Tsilioni   Pages 1872 - 1882 ( 11 )

Abstract:


Background: Most neurodegenerative and other brain disorders, especially Myalgic encephalomyelitis/ chronic fatigue syndrome (ME/CFS) and autism spectrum disorder (ASD) continue to elude objective biomarkers and effective treatments. Increasing evidence indicates that such diseases involve focal inflammation of the brain.

Objective: To review the role of cytokine-neuropeptide interactions in the pathogenesis of inflammation of the brain and the beneficial role of natural flavonoids.

Methods: Medline search was conducted (2000-2017) for articles using the terms allergy, amygdala, atopy, autism, brain, chemokines, cytokines, hypothalamus, immunity, inflammation, mast cells, microglia, neurotensin, peptides, substance P, and TNF.

Results: Neuropeptides and cytokine stimulation of mast cells and microglia can result in focal inflammation in the hypothalamus and amygdala, thus explaining most of the symptoms at least in ME/CFS and ASD. Some of the triggers may be corticotropin-releasing hormone (CRH), neurotensin (NT), and substance P (SP), which have synergistic action on IL-33. The natural flavonoids luteolin and tetramethoxyluteolin inhibit these processes and have neuroprotective actions. Tetramethoxyluteolin is also more metabolically stable and has greater oral absorption.

Conclusion: Inhibition of inflammatory processes unique to the brain with intranasal formulations of tetramethoxyluteolin could provide new possibilities for the understanding and treatment of neurodegenerative diseases.

Keywords:

Autism spectrum disorder, Cytokines, Inflammation, Mast cells, Microglia, Myalgic encephalomyelitis/chronic fatigue syndrome, Luteolin, Tetramethoxyluteolin.

Affiliation:

Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA

Graphical Abstract:



Read Full-Text article